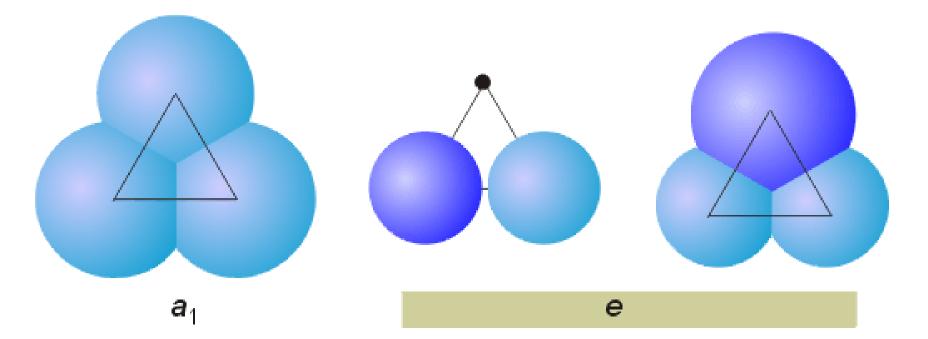
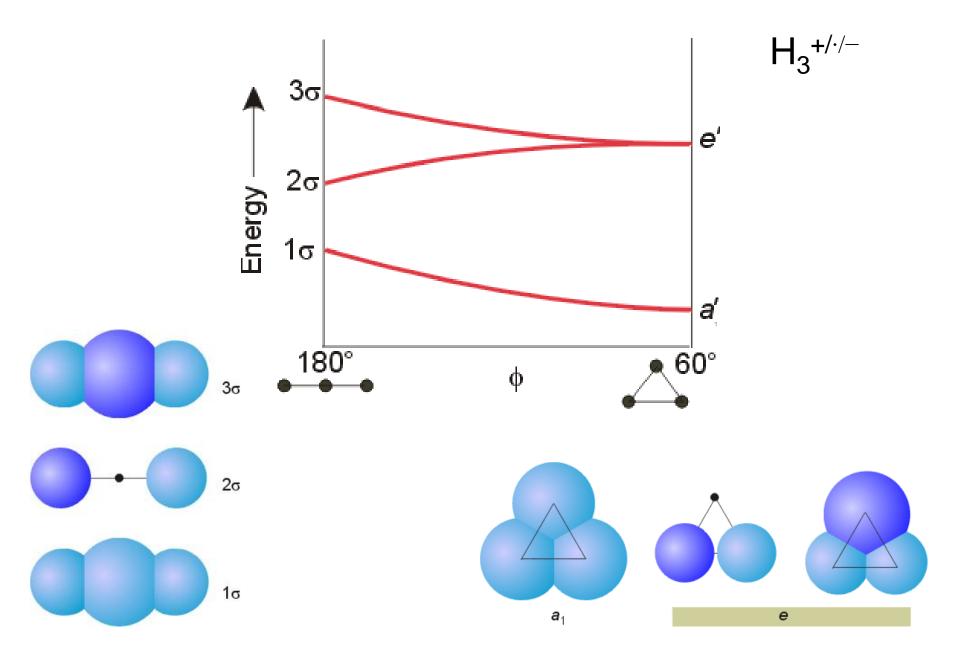

MO Theory of Polyatomic Systems

Increasing number of nodal planes

MO Theory of Polyatomic Systems


 $H_3^{+/\cdot/-}$ cyclic

D _{3h} (6 m2)	E	2 <i>C</i> ₃	3C ₂	σ _b	2S ₃	3σ _v	h = 12	
A' ₁								$x^2 + y^2, z^2$
A'2	1	1	-1	1	1	-1	Rz	
E ′	2	-1	0	2	-1	0	(x, y)	(x^2-y^2,xy)
A ″	1	1	1	-1	-1	-1		
A''_	1	1	-1	-1	-1	1	Z ·	· · · ·
E″	2	-1	0	-2	1	0	(R_x, R_y)	(zx, yz)


MO Theory of Polyatomic Systems

$H_{3}^{+/\cdot/-}$

D _{3h} (6 m2)	E	2C ₃	3C ₂	σ_h	2S ₃	3σ _v	h = 12	
$\frac{1}{A_1'}$	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2'	1	1	-1	1	1	-1	Rz	
E'	2	-1	0	2	-1	0	(x, y)	(x^2-y^2,xy)
A ″	1	1	1	-1	-1	-1		
A''_	1	1	-1	-1	-1	1	Z	
E″	2	-1	0	-2	1	0	(R_x, R_y)	(zx, yz)

Walsh Diagram of H₃

MO Theory of Polyatomics: The Central-Atom Model

- Determine the point group of the molecule.
- Consider the atomic orbitals from the central atom:
 - get symmetry labels for those AOs
- Consider atomic orbitals from the peripheral atoms (ligand atoms):
 get sets of symmetry adapted orbitals.
- Combine AOs to MOs according to rules of symmetry, energy and overlap